Transition metal ions in black tea: an electron paramagnetic resonance study

Recep Biyik · Recep Tapramaz

Received: 23 June 2009/Accepted: 25 September 2009/Published online: 20 October 2009
© Springer Science+Business Media B.V. 2009

Abstract Tea (Camellia Sinensis) is the most widely consumed beverage in the world and is known to have therapeutic, antioxidant and nutritional effects. It contains dimeric flavanols and polyphenols which are known as the most important organic compounds in tea infusions, and can make strong and stable complexes with metal ions. In this study, we carried out a series of electron paramagnetic resonance experiments on well-known paramagnetic transition metal ions, namely Mn$^{2+}$, Fe$^{3+}$, Cu$^{2+}$, VO$^{2+}$, and Cr$^{3+}$ doped in black tea cultivated along the shore of Black Sea, Turkey, to see the effects and structures formed.

Introduction

Tea (Camellia Sinensis) is the most widely consumed beverage after drinking water all over the world. Green tea has been used as crude medicine in China and Japan for thousands of years and therefore the scientific community has intensified work on its therapeutic effects in recent years [1]. Tea is produced by over thirty countries in the world and consumed mainly in two forms: green (or non-fermented) tea and black (or fermented) tea. A semi-fermented form, known as Oolong tea is also consumed in some Asian countries. Black tea has the highest consumption ratio at 75–80%. All forms are known to have nutritional, antimutagenic and antioxidant effects. Antioxidants are also known to play an important role in metal poisoning, as excellent scavengers of free radicals and ions, and chelators of heavy metals [2]. The antioxidant, pharmacological, nutritional, and related properties of ingredients of both green and black tea have drawn the attention of scientists, and the work done so far has been reviewed and discussed [1–5].

Black tea supplied for human consumption contains approximately 10–12% catechins, 3–6% theaflavins, 12–18% thearubigins, 6–8% flavanols, 10–12% phenolic acid and depsides, 13–15% amino acids, 8–11% methylxantines, 15% carbohydrates, protein minerals and some volatiles [6–9]. Figure 1 shows the structures of the main catechin components in black tea, from which the polyphenols, namely theaflavins, thearubigins, flavanols and phenolic acids, etc., are formed. Polyphenols are the most important ingredients among organic compounds in tea infusions and make strong and stable complexes with metal ions [10]. In this study, we report EPR studies on some transition metal ions doped into black tea infusions. The structures of the complexes are discussed.

Experimental

Black tea samples were bought from local markets including the products of the northeastern part of Turkey where the climate is suitable for tea cultivation along the shore of Black Sea. Chemicals were purchased from Merck.

All glassware was cleaned by soaking in dilute HNO$_3$ and rinsed with distilled water prior to use. EPR spectra were taken at room temperature. The amounts and concentrations of water extracts of black tea were prepared in a similar way as for daily consumption by following the ISO3103 standard; 2 g of dry black tea leaves were put in 100 mL boiled water, kept for 6 min and then filtered. Distilled water was used in all extraction processes.
The main polyphenol structures in black tea. Epicatechin [EC]: \(R_1 = R_2 = H \). Epigallocatechin [EGC]: \(R_1 = H; R_2 = OH \). Epicatechin-3-gallate [ECG]: \(R_1 = \text{Galloyl}; R_2 = H \). Epigallocatechin-3-gallate [EGCG]: \(R_1 = \text{Galloyl} \).

Water extracts of black tea divided into separate cups with equal amounts. MnSO\(_4\), FeCl\(_3\), CuSO\(_4\), VOSO\(_4\) and CrCl\(_3\) was added to each cup with molarities changing between 0.01 M and 0.2 M at 70 °C, the average temperature of preparation for consumption. The samples were then left for slow evaporation in a clean oven operating at 40 °C. The dry extracts were put into quartz tubes, and EPR spectra were recorded. Pure extract was also dried for spectroscopic analysis.

The X-band EPR spectra were recorded using a Varian E-109 Line Century Series spectrometer equipped with a Varian E-231 TE-102 rectangular cavity. The microwave frequency and power were 9.52 GHz and 2 Mw, respectively. Temperature was controlled with a Varian temperature control unit. The spectra of tea samples were recorded in quartz sample tubes. The spectrometer frequency was corrected using DPPH (dihenylpicrylhydrazyl, \(g = 2.0036 \)) as standard. Spectrum simulations were made using Bruker’s WINEPR software.

Results and discussion

Figure 2a shows the EPR spectrum of black tea extract. The spectrum contains a broad envelope at \(g = 2.00 \) and a sextet superimposed on it with average hyperfine splitting of 9.4 mT, originating from a slightly distorted octahedral Mn\(^{2+}\) complex, a relatively weak broad shoulder at the low field side of the Mn\(^{2+}\) sextet, a weak line at \(g = 4.32 \), and a single sharp line at \(g = 2.0022 \). The components of the spectrum are similar to the previously reported structures [11–13]. The sharp and intense line at \(g = 2.0022 \) is attributed to the semiquinone radical. The two weak lines, one on the low field side of the sextet and the other as at \(g = 4.32 \), are attributed to different Mn\(^{2+}\) complexes with distorted tetrahedral symmetry as in previous work [11, 12]. The relatively weak line at \(g = 4.32 \), however, originates mainly from a different paramagnetic center and will be discussed below. The relative intensities of the components in the spectra may vary depending on the fermentation processes, storage conditions, age of leaves, geographic region and the climate [1, 7, 14, 15].

Ferrara et al. have determined the metal contents of tea samples taken from various regions by chromatography, and appreciable amounts of Mn, Fe, Al, Zn, Mg, Ni, Ca and Na were observed, whereas Cu was detected in relatively small amounts [8]. EPR spectra of tea show only paramagnetic Mn\(^{2+}\) and Fe\(^{3+}\) clearly; the transition lines of other paramagnetic metals, like Cu\(^{2+}\), as complex structures and oxides or hydroxides are relatively weak and are probably lying under the broad envelope.

In the following paragraphs, the results of the introduction of small amounts of excess paramagnetic metals, namely Mn\(^{2+}\), Fe\(^{3+}\), Cu\(^{2+}\), VO\(^{2+}\) and Cr\(^{3+}\) as dopands in the tea catechin will be discussed.

Mn\(^{2+}\) ions in black tea

Mn\(^{2+}\) with 3d\(^5\) (\(^6S_{5/2} \)) configuration exists in high spin state (\(S = 5/2 \)). Therefore, the EPR spectra must fit to the standard Hamiltonian for Mn\(^{2+}\) complexes given in references [16–20].

Since the samples were in glassy state, the anisotropic values of \(g \), hyperfine and zero field splitting are seen in the spectra, Fig. 2a. The average \(g \) and hyperfine values are typical for Mn\(^{2+}\) complexes in slightly distorted octahedral symmetry. For such complexes, the \(g \) value is relatively anisotropic, changing between 2.02 and 1.98 and averaging to \(g = 2.00 \). The anisotropy in hyperfine splitting, on the other hand, is small compared to the hyperfine value itself, changing around 8.5 ± 1.5 mT [7, 11, 12, 19, 20]. In the tea samples used in the present study, it was measured as approximately 9.4 mT. The zero field splitting parameters \(D \) and \(E \) for the complex under study, however, are relatively small to fit to slightly distorted octahedral structure of the complex [7, 11, 12, 16, 19, 20]. In other words, the
The ligands are phenolic ingredients, coordinated. The Mn$^{2+}$ doped tea extract plexes, and simulation of the dilute Mn$^{2+}$ with be negative. If the separations between the sextets decrease on high field.

The calculated parameters are also given.

<table>
<thead>
<tr>
<th>parameter</th>
<th>Mn$^{2+}$ doped tea extract</th>
<th>Cu$^{2+}$ doped tea extract</th>
<th>VO$^{2+}$ doped tea extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_{av}</td>
<td>2.00</td>
<td>2.26</td>
<td>1.93</td>
</tr>
<tr>
<td>a_{av}</td>
<td>-9.4 mT</td>
<td>2.05</td>
<td>1.98</td>
</tr>
<tr>
<td>D</td>
<td>-9 mT</td>
<td>15 mT</td>
<td>18 mT</td>
</tr>
<tr>
<td>E</td>
<td>4 mT</td>
<td>3 mT</td>
<td>8 mT</td>
</tr>
</tbody>
</table>

The sign and magnitude of D depends on the symmetry of the metal ion. Negative values of D are related to tetragonal elongation or trigonal compression [19, 20]. The values determined are given in Table 1. The D and E values are smaller compared to those of most Mn$^{2+}$ complexes, and D is greater than E, which reflects that the distortion is also smaller and mainly axial.

The broad envelope belonging to the Mn$^{2+}$ ion seems to be symmetric for both pure tea, Fig. 2a, and MnSO$_4$ doped tea extracts, Fig. 2c. Spectra of MnSO$_4$ doped extracts with various molarities show that the intensity of the Mn$^{2+}$ envelope at $g = 2.00$ increases for all Mn$^{2+}$ concentrations. The intensities of other components and especially the broad shoulder on the low field side of the Mn$^{2+}$ sextet, however, do not change, while the sextet disappears because of broadening due to dipolar interactions as the Mn$^{2+}$ concentration is increased, Fig. 2c. The other components of the spectrum, including the weak line at $g = 4.32$ remain unaffected after this process.

In order to obtain detectable spectra and to see the changes in intensity more clearly, 0.1 M or higher amounts of FeCl$_3$ were added into the extracts. The extracts were dried rapidly at about 40 °C and the EPR spectrum obtained is given in Fig. 2d. The weak line at $g = 4.32$ and broad envelope at $g = 2.00$ have increased appreciably compared to the untreated extract. The increase of the weak line at $g = 4.32$ shows that this line arises mainly from Fe$^{3+}$ complexes and seems to be inconsistent with the results of some previous work which claimed that it arises from Mn$^{2+}$ complexes [21–24], and is consistent with the results obtained from atomic absorption spectroscopy [8]. The increase of the broad envelope, which overlaps with Mn$^{2+}$ and the semiquinone line, can be attributed to various iron compounds including mainly free FeCl$_3$ and probably oxides and hydroxides of iron in trace amounts formed after the introduction of FeCl$_3$. The Mn$^{2+}$ lines persist but the semiquinone line diminishes as the semiquinone radical is scavenged by Fe$^{3+}$ ion, Fig. 2d. Paramagnetic Fe$^{3+}$ ion exits in high spin ($S = 5/2$) and low spin ($S = 1/2$) and sometimes in intermediate states. It is shown that the line at $g = 4.32$ arises from high spin Fe$^{3+}$ complexes with rhombically distorted symmetry; the ligands are phenolic groups in the tea extract, which coordinate via oxygen atoms [17, 18, 21–25].

The shoulder at low field side of the Mn$^{2+}$ envelope does not increase in any of the samples therefore it cannot be attributed to components or complexes of Mn$^{2+}$ or Fe$^{3+}$. The source is probably trace amounts of superparamagnetic oxides and hydroxides of some metals. Further analysis is impossible because of lack of information which can be obtained from EPR spectra.

Cu$^{2+}$ ions in black tea

Water extracts of black tea were divided into separate cups in equal amounts and CuSO$_4$ was added in each cup with molarities changing between 0.01 and 0.1 M at 70 °C. Samples were then left for slow evaporation in a clean oven operating at 40 °C. The colors of the extracts changed to dark green immediately after addition of CuSO$_4$. Dry extracts were put in sample tubes, and EPR spectra were recorded. The EPR spectra show that 0.05 M of Cu$^{2+}$ is enough to suppress the existing spectroscopic lines shown in Fig. 2a, except the sharp line belonging to the semiquinone radical, Fig. 3a. Higher Cu$^{2+}$ concentrations produce a very broad envelope due to dipolar interactions.

The spectra belong to Cu$^{2+}$ ion with $S = 1/2$ and $I = 3/2$, and can be explained according to the well-known Hamiltonian for Cu$^{2+}$ complexes, [26–28]. Measured EPR parameters show axial structure with values given in Table 1. The ligands are phenolic ingredients, coordinated to Cu$^{2+}$ ion in a bidentate mode via oxygen atom and

Fe$^{3+}$ ions in black tea

Paramagnetic 57Fe$^{3+}$ isotope (nuclear spin $I = 1/2$) has natural abundance of 2.12%. Therefore, the paramagnetic complex will be dilute, and the spectrum will be weak.
The EPR spectrum of the Cu2+ doped tea extracts, b phenolic ingredients coordinated to Cu2+ hydroxide group of the phenol ring, which forms the equatorial plane of the octahedron. It is likely that two other phenolic groups are coordinated at apex positions [26], as shown in Fig. 3b. The structure formed is axially symmetric as observed from the spectrum and common to most Cu2+ complexes.

VO2+ ions in black tea

When small amounts of VOSO\textsubscript{4}, from 0.01 to 0.1 M, were added into extracts of black tea at 70 °C prepared similarly to the samples above, the solutions became black immediately, which means that the dopant react vigorously with the ingredients of the tea infusion. The solutions were left for slow evaporation at 40 °C. Figure 4 shows the EPR spectrum of 0.05 M VOSO\textsubscript{4}-doped black tea extract. The spectrum belongs obviously to the VO2+ ion with $S = 1/2$ and $I = 7/2$ in glassy state and can be explained according to the common Hamiltonian for VO2+ complexes, [27, 28]. Perpendicular and parallel components of the VO2+ ions are resolved and given in Table 1. The parameters fit to VO2+ ions in slightly distorted octahedral environment where the phenolic groups are coordinated via oxygen atoms.

Cr3+ ions in black tea

Tea extracts with Cr3+ dopant (CrCl\textsubscript{3}) were prepared similar to the samples above. The solutions were left for slow evaporation at 40 °C, and the EPR spectra were then recorded, Fig. 5. Crn^+ ($n = 1, 2, 3, 4, 5$) ions can form complexes with different symmetries when doped in different host structures. As well as different ionic states, Cr1+ (3d3), Cr2+ (3d4), Cr3+ (3d5), Cr4+ (3d6), Cr5+ (3d7), there are high- or low-spin states [29, 30]. EPR spectra of Cr3+- doped black tea have a broad envelope at $g = 2.00$ with average line width of 100 mT. Cr3+ suppresses all other spectroscopic components in the pure tea extract including the semiquinone radical. It is assumed that Cr3+ ions in black tea coordinate to phenol groups more strongly and diminish the existing radicals and other paramagnetic species. Further analysis is not possible because of insufficient information due to the samples being in glassy structure and the broad envelope observed.

Conclusion

The interactions between black tea and some commonly encountered paramagnetic transition metal ions have been investigated by EPR. The spectra of pure and dry tea extract has the same natural components as previously reported; a Mn2+ sextet superimposed on a broad envelope, a sharp semiquinone line and a weak line at low field which was attributed previously to Mn2+ ion. In order to see the effects of excess paramagnetic metal ions, Mn2+, Fe3+, Cu2+, VO2+, and Cr3+ were added separately to tea extracts at 70 °C, which is the average temperature during preparation and consumption. Mn2+ interacts with catechins rapidly, produces distorted octahedral complex structures and the original sextet disappears due to dipolar interactions. The semiquinone line is suppressed by a broad envelope. The weak line at low field side, however, does
not change for all concentrations indicating that this line does not belong to manganese ion.

The structures formed by excess Cu$^{2+}$ and VO$^{2+}$ ions fit to common structures formed by these ions. Both ions suppress other spectroscopic components, and the weak line at $g = 4.32$ does not change. The addition of excess FeCl$_3$ diminishes the semiquinone line and suppresses the original Mn$^{2+}$ sextet, but the weak line at $g = 4.32$ increases greatly. This shows that the weak line belongs to the Fe$^{3+}$ structure in octahedral environment. The oxides and hydroxides of iron are also formed. The addition of CrCl$_3$ gives similar behavior to iron except that the weak line at $g = 4.32$ is not affected.

References