DIFFUSION AND AGGLOMERATION OF HELIUM IN STAINLESS STEEL

Ganeev G.Z., Turkebaev T.E.
Institute of Nuclear Physics, Almaty, Kazakhstan

ABSTRACT
Diffusion of helium and formation of helium bubbles in stainless steel in condition of atomic displacement are studied theoretically using standard rate equations [1]. Besides this bubble coalescence is assumed to result when collisions occur between bubbles as they migrate by surface diffusion through the solid [2]. The dissociative mechanism via self-interstitial He^+ replacement is assumed to control helium diffusion and bubble formation. The theoretically analysis is based on the diatomic nucleation model where two helium atoms are assumed to compose a stable nucleus. For nucleation of interstitial loops, two atoms are assumed to compose a stable nucleus. In the present work is assumed that coalescence follows bubble collisions resulting from random migration of bubbles in Chandrasekhar’s approximation.

INTRODUCTION
The introduction of helium into metals by ion implantation and nuclear transmutation can result in a serious loss of ductility, which is of great concern for performance of metals in nuclear power plants, high-flux spallation neutron sources and tritium storage.

In the present work, we study a model for helium diffusion and bubble formation in stainless steel implanted with energetic helium ions in the intermediate temperature range. The temperature dependence of helium diffusivity and bubble structures is our main concern. The model is simplified by ignoring the effects of grain boundaries. The migration and coalescence of bubbles is not ignored. While formation of bubbles at dislocations has to be considered in the model.

MODEL DESCRIPTION AND RATE EQUATIONS
The theoretical analysis is based on the diatomic nucleation model where two helium atoms are assumed to compose a stable nucleus. In this case bubble formation is controlled by the diffusion of helium. The usual vacancy mechanism is not likely operative because of the immobility of vacancies at ambient temperature. In the model we consider another possible mechanism for radiation-enhanced helium diffusion, the so-called “dissociative mechanism” by which He atoms dissociate from the vacancies to interstitial lattice sites as a result of recombination of Frenkel pairs. The dissociative mechanism via the self-interstitial/He replacement is expected to be operative in the intermediate temperature range, since self-interstitials and He atoms at interstitial sites have considerable mobility even at temperatures far below room temperature. It is suggested that mobile only complex containing two He-atoms (surface diffusion mechanism). Equilibrium complex of two or four He-atoms is pore.

In the following rate equations, kinetic evolution of self-interstitials, vacancies, interstitial loops and He-vacancy clusters (bubbles) are described according to [1]. Formation of bubbles on dislocations is described according to [3]. The meaning and values of the symbols, parameters and constants (in stainless steel) are described in Table 1.

\[
\frac{dC_i}{dt} = K(1 - v_s C_i - v_c C_v) / \Omega - 4\pi \tau_i (D_i + D_v) C_i C_v - Z_i D_i C_i (\rho_d + \rho_i) -
\]

\[
- 4\pi_i^2 D_i C_i C_{He}^2 - 4\pi \tau_i^2 D_i C_i (r_b C_b + r_b C_b^d) - 8\pi_i D_i C_i^2
\]
\[
\frac{dC_v}{dt} = K(1 - v_sC_i - v_sC_v)/(\Omega - 4\pi r_v(D_i + D_v)C_iC_v - Z_vD_vC_v(\rho_d + \rho_v) - \\
-4\pi r_{He}^v(D_v + D_{He})C_{He}C_{He} - 4\pi Z_b^vD_vC_v(r_bC_b + r_{He}^dC_{He}^d) - 8\pi r_iD_iC_i^2
\]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_s Spontaneous recombination volume</td>
<td>100Ω m3</td>
</tr>
<tr>
<td>γ Surface energy</td>
<td>2.0 J/m</td>
</tr>
<tr>
<td>μ Shear module</td>
<td>100 GPa</td>
</tr>
<tr>
<td>k_b Boltzmann's constant</td>
<td>1.38×10^{-23} J/K</td>
</tr>
<tr>
<td>T Temperature</td>
<td>300-900 K</td>
</tr>
<tr>
<td>D_s Surface’s diffusivity of Fe-atoms</td>
<td>0.58 exp($-Q/RT$) m2/s</td>
</tr>
<tr>
<td>Q Energy activation</td>
<td>142 kJ/mol</td>
</tr>
<tr>
<td>R Gas const.</td>
<td>8.31 J/mol</td>
</tr>
</tbody>
</table>

\[
\frac{dC_{He}^i}{dt} = G_{He}/\Omega + 4\pi r D_i C_i^i C_{He}^s - Z_{He}^d D_{He}^i C_{He}^s (\rho_d + \rho_I) - 4\pi r He (D_v + D_{He}^i) C_v C_{He}^i - 4\pi Z_{He}^d D_{He}^i C_{He}^i (-r b C_b + r b C_{He}^i) - 4\pi r He D_{He}^i C_{He}^i C_{He}^s - 8\pi r He D_{He}^i C_{He}^s^2
\]

\[
\frac{dC_{He}^s}{dt} = 4\pi r He (D_v + D_{He}^i) C_v C_{He}^i - 4\pi r He D_{He}^i C_{He}^i C_{He}^s - 4\pi r He D_{He}^i C_{He}^s (4)
\]

\[
\frac{dC_i}{dt} = 8\pi r D_i C_i^2 (5)
\]

\[
\frac{dn}{dt} = (Z_i D_i C_i - Z_v D_v C_v) b^{-1} \Omega (6)
\]

where $C_1, C_v, C_{He}, C_{He}'$ are concentration of self-interstitials, vacancies, interstitial loops. He atoms at interstitial and substitutional sites, respectively. r_i is the mean radius of interstitial loops. Spontaneous recombination of Frenkel pairs is included in the first terms in Eqs. (1) and (2). The fourth term in Eq. (1) and second term in Eq. (4) represent the self-interstitial/He replacement mechanism.

For formation of bubbles in the matrix,

\[
\frac{dC_{3j}}{dt} = 8\pi D_2 r_{2j} C_{2j}^2 (7)
\]

\[
\frac{dC_{2j}}{dt} = 4\pi \cdot r_1 \cdot D_2 C_j (C_j + C_s) - 2 \cdot \frac{dC_b}{dt} - J_{2j} (8)
\]

\[
J_{2j} = 4\pi D_2 (r_b + r_{2j}) \cdot C_{2j} (9)
\]

\[
D_2 = 3/2 \cdot \Omega^{4/3} D_s / (\pi r_j^4) (10)
\]

where C_b is the number density of bubbles in matrix, C_{n}- concentration of complex of n He-atom, r_{eq} - equilibrium rad. of complex, D_2 - diff.coeff. for surface diff. Migration [2], D_s - surface diffusion coefficient.

\[
\frac{d\bar{n}_j}{dt} = 4\pi Z_{He}^b r_b D_{He}^i C_j (C_j + C_s) + 2J_{2j} (11)
\]

\[
\frac{d\bar{n}_v}{dt} = 4\pi Z_{He}^b r_b (D_v C_v - Z_i D_i C_i) + n v_2 \cdot J_{2j} (12)
\]

where \bar{n}_j, \bar{n}_v are the average number of He atoms and vacancies, respectively contained in a

Section V. Radiation and Materials
bubble, \(n_{v2} \) – number vacancies in two He-atoms complex. The growth of bubbles is dependent on the inner gas pressure \(P_{He} \), which is described by Van der Waal’s gas law

\[
P_{He} = n_{He} k_b T \left(\frac{3}{4} \pi \rho_b - n_{He} b_v \right).
\]

Bubbles are expected to grow by absorbing vacancies (i.e., bias-driven growth) when there is a considerable concentration of freely migrating vacancies, while they are expected to grow by pushing out some matrix atom planes when the inner gas pressure exceeds the critical value of mechanical stability \(P_{He} > \frac{2\gamma}{rb} \) (\(\mu b/r_b \) is the shear module of matrix),

\[
(d\bar{r}_b)_{L^+} = b/4.
\]

For nucleation of bubbles at dislocations, dislocations produced before He ion implantation (for example by cold working) or during implantation (by production of dislocation loops) are expected to supply equally favorable sites for bubble nucleation. The former are constant in density (denoted as \(\rho_d \)) while the latter increase (denoted as \(\rho_l \)) during He ion implantation.

\[
\frac{dC_1}{dt} = f_z \cdot J_d - 8D_j C_1^2 / I_s^2 - 16D_j C_1 / I_s,
\]

\[
\frac{dC_2}{dt} = 8D_j C_1^2 / I_s,
\]

\[
\frac{d\bar{m}}{dj} = 8D_j C_1 / I_s + 4\pi \cdot \eta_b D_f C_j,
\]

where \(C_1, C_2 \) – linear’s concentrations (m\(^{-1}\)) of He-atoms and bubbles on dislocation, \(n_j \) - the average number of He atoms, contained in a bubble, \(n_v \) - the average number of vacancies give equation (12),

\[
J_d = Z_j D_j C_j / C_2,
\]

\[
D_f = C_j / (C_j + C_2) D_j \text{ (eff.diff.coeff.),}
\]

\[
f_z = \Omega (\rho_d + \rho_l) / b \text{ (corr factor),}
\]

\[
I_s = (1 - 2\eta_b C_2) / C_2 \text{ (distance between pore’s surface).}
\]

RESULTS AND DISCUSSION

The time dependence of concentrations and number of vacancies and He-atoms in pore is shown in fig.1-4 (\(T=873 K, k=10^{6} \text{apa/s}, K_{He}=1 \text{ppm/s} \)). The correct analysis in pore’s nucleation on dislocation show significant differences with results [1].

Fig.1. Line concentration of pore on dislocation versus time.

Fig.2. Volume concentration of pore in matrix versus time.
Fig. 3. Number vacancies in pore on dislocation versus time.

Fig. 4. Number vacancies in pore in matrix versus time.

REFERENCES

