PREPARATION OF RADIOPHARMACEUTICAL FOR HEPATOBILIARY IMAGING

S. NURMATOV, A. RIKHSIEV, A. ABDUKAYUMOV, S. KHUJAEV
Radiopreparat Enterprise, Institute of Nuclear Physics, Academy of Sciences, Republic of Uzbekistan

Most hepatobiliary agents labeled with 99mTc are iminodiacetic acid (IDA) derivatives. Among them, 99mTc-3-bromo-2,4,6-trimethyl HIDA best combines the characteristics of a high hepatic uptake, a low urinary excretion, and fast blood clearance, and it is a hepatocellular transit. Furthermore, 99mTc-3-bromo-2,4,6-trimethyl HIDA has a lower renal clearance and the highest degree of resistance to the competitive effects of bilirubin. Although 99mTc-3-bromo-2,4,6-trimethyl HIDA shows excellent characteristics for use in cholescintigraphy, all of the kits used in Uzbekistan are imported from abroad. A synthetic procedure of the 3-bromo-(2,4,6-
trimethylphenylcarbamoylmethyl) iminodiacetic acid (3-bromo-2,4,6-trimethyl HIDA) as compound to prepare 99mTc-3-bromo-2,4,6-trimethyl HIDA has not been previously reported in the literature.

2,4,6-Trimethylaniline and all other chemicals used in this study were purchased from the Aldrich Chemical Co. (Milwaukee, USA), and were of AR grade. Sodium pertechnetate ($\text{Na}^{99m}\text{TeO}_2$) was obtained using a $^{99m}\text{Mo}-^{99m}\text{Tc}$ generator (Radiopreparat Enterprise, Uzbekistan). The radiolabeling yield was determined by means of an instant thin layer chromatography (ITLC).

3-bromo-2,4,6-trimethyl HIDA was synthesized, and lyophilized vials were prepared which contained 20 mg of 3-bromo-2,4,6-trimethyl HIDA and 0.4 mg of SnCl$_2$. Radiochemical and biologic studies showed that this agent was obtained in high radiochemical purity, were stable in vitro and in vivo. The compound, ^{99m}Tc-3-bromo-2,4,6-trimethyl HIDA, possessed high hepatic specificity meaning that none of the tissues except for the hepatobiliary system showed radioactivity concentrations, and rapid hepatocellular transit and a rapid clearance from the organs was observed.

In conclusion, a lyophilized kit and its prepared ^{99m}Tc-3-bromo-2,4,6-trimethyl HIDA can be applied as a hepatobiliary imaging agent for the evaluation of the functional status of the hepatocytes and the patenty of the biliary duct.