DEVELOPMENT OF SEALED RADIATION SOURCE BASED ON CADMIUM-109 RADIONUCLIDE

S. EGAMEDIEV, D. NURBAEVA
Institute of Nuclear Physics, Academy of Sciences of Republic of Uzbekistan, e-mail:
egamedievs@mail.ru

The x-ray fluorescent analysis is based on fact that the x-rays emitted from an ionized atom have energies that are characteristic of the element involved. The x-ray intensity is proportional to both the elemental concentration and the strength of the ionizing source. Photon ionization, which
is achieved using radioisotopes (55Fe, 57Co, 109Cd, 241Am) is most convenient to nondestructive assay of various materials. Among them the 109Cd radionuclide has found widespread use as a photon source in x-ray fluorescence analysis devices employed in industry for numerous applications such as the direct determination of gold in ores, the analysis of metals and identification of steels.

Cadmium-109 has a half-life of 461.9 days and decays by electron capture to 109Ag with the emission of a γ-ray of 88 keV (3.79%) along with the characteristic X-ray from the K level of Ag, with energy of 22.5 keV. There are several methods for the production of 109Cd in literature: 1) Bombardment of silver cyclotron target via 109Ag(d,2n)109Cd reaction with 16 MeV deuterons. 2) Bombardment of natural silver target via 109Ag(p,n)109Cd reaction with 14 MeV protons. 3) Proton bombardment of natural indium target with 96 MeV protons. 4) Irradiation of enriched 107Ag target in high-flux nuclear reactor at neutron flux 2×10^{15} n·cm$^{-2}$·s$^{-1}$ via 107Ag(n,γ)108Ag\rightarrow^{108}Cd (n,γ) 109Cd reaction. 5) Irradiation of enriched 108Cd target in nuclear reactor at neutron flux 1×10^{14} n·cm$^{-2}$·s$^{-1}$ via 108Cd (n,γ) 109Cd reaction.

In the present work we developed both a method for separation and purification of 109Cd from cyclotron silver target and a method for preparation of sealed source based on cadmium-109.

The purification method is based on the selective adsorption of silver on column containing 0.5 g of polyethenemonosulphide (PEMS or trade name TR-1) from nitric acid solutions of Ag, Cu, Zn and Cd. This sorbent has high adsorptive capacity to silver, its adsorptive capacity reaches to 1920 mg/g from 1.5 M nitric acid solutions. After adsorption of silver the solution obtained evaporated to dryness and the solid residue is dissolved in 0.5 M nitric acid containing 0.1 M hydrobromic acid. Then the solution obtained is percolated through the column, containing 5 ml of Dowex1×8 resin. The copper(II) and zinc are completely eluted with 70 ml of 0.5 M HNO$_3$ + 0.1 M HBr. The cadmium-109 is eluted with 50 ml of 3 M nitric acid. The obtained solution is evaporated to dryness and the dry residue is treated by evaporation with 2 ml of 12 M hydrochloric acid. After treatment the damp residue is dissolved in 0.1 M hydrochloric acid. The yield of cadmium-109 is higher than 90% and the radiochemical purity was more than 99.9%.

The 109Cd radionuclide obtained is incorporated in ceramic matrix and sealed in an argon welded titanium capsule. The activity of active part with dimensions 4×2 mm was 740 MBq. The window thickness is 0.25 mm. The testing for leakage of the experimental source sample with 109Cd radionuclide showed that the activity removed is less 185 MBq.

The Science and Technologies Center at Cabinet of Ministers of Republic of Uzbekistan support this work (contract № 13-092).